
A sceptical view on decomposition attacks

Claus Diem

University of Leipzig

June 6, 2016



Decomposition attacks

Fix some kind of finite abelian groups (G ,+).

Consider the discrete logarithm problem:

Given (G ,+) and A,B with B = eA for some e ∈ N
compute such an e!



Decomposition attacks

Fix some kind of finite abelian groups (G ,+).

Consider the discrete logarithm problem:

Given (G ,+) and A,B with B = eA for some e ∈ N

compute such an e!



Decomposition attacks

Fix some kind of finite abelian groups (G ,+).

Consider the discrete logarithm problem:

Given (G ,+) and A,B with B = eA for some e ∈ N
compute such an e!



Decomposition attacks

Input. (G ,+);A,B ∈ G , A a generator

1. Compute N := ord(G ).

2. Fix a decomposition base / factor base F = {F1, . . . ,Fr}.
3. Compute r + 1 relations

αiA + βiB =
∑
j

ri ,jFj .

4. Compute γ ∈ Z/NZ with γR = 0.

=⇒ (
∑
i

γiαi )A + (
∑
i

γiβi )B = 0

5. Output e := −
∑

i γiβi∑
i γiαi

∈ Z/NZ.



Decomposition attacks

Input. (G ,+);A,B ∈ G , A a generator

1. Compute N := ord(G ).

2. Fix a decomposition base / factor base F = {F1, . . . ,Fr}.
3. Compute r + 1 relations

αiA + βiB =
∑
j

ri ,jFj .

4. Compute γ ∈ Z/NZ with γR = 0.

=⇒ (
∑
i

γiαi )A + (
∑
i

γiβi )B = 0

5. Output e := −
∑

i γiβi∑
i γiαi

∈ Z/NZ.



Decomposition attacks

Input. (G ,+);A,B ∈ G , A a generator

1. Compute N := ord(G ).

2. Fix a decomposition base / factor base F = {F1, . . . ,Fr}.

3. Compute r + 1 relations

αiA + βiB =
∑
j

ri ,jFj .

4. Compute γ ∈ Z/NZ with γR = 0.

=⇒ (
∑
i

γiαi )A + (
∑
i

γiβi )B = 0

5. Output e := −
∑

i γiβi∑
i γiαi

∈ Z/NZ.



Decomposition attacks

Input. (G ,+);A,B ∈ G , A a generator

1. Compute N := ord(G ).

2. Fix a decomposition base / factor base F = {F1, . . . ,Fr}.
3. Compute r + 1 relations

αiA + βiB =
∑
j

ri ,jFj .

4. Compute γ ∈ Z/NZ with γR = 0.

=⇒ (
∑
i

γiαi )A + (
∑
i

γiβi )B = 0

5. Output e := −
∑

i γiβi∑
i γiαi

∈ Z/NZ.



Decomposition attacks

Input. (G ,+);A,B ∈ G , A a generator

1. Compute N := ord(G ).

2. Fix a decomposition base / factor base F = {F1, . . . ,Fr}.
3. Compute r + 1 relations

αiA + βiB =
∑
j

ri ,jFj .

4. Compute γ ∈ Z/NZ with γR = 0.

=⇒ (
∑
i

γiαi )A + (
∑
i

γiβi )B = 0

5. Output e := −
∑

i γiβi∑
i γiαi

∈ Z/NZ.



Decomposition attacks

Input. (G ,+);A,B ∈ G , A a generator

1. Compute N := ord(G ).

2. Fix a decomposition base / factor base F = {F1, . . . ,Fr}.
3. Compute r + 1 relations

αiA + βiB =
∑
j

ri ,jFj .

4. Compute γ ∈ Z/NZ with γR = 0.

=⇒ (
∑
i

γiαi )A + (
∑
i

γiβi )B = 0

5. Output e := −
∑

i γiβi∑
i γiαi

∈ Z/NZ.



Decomposition attacks

Input. (G ,+);A,B ∈ G , A a generator

1. Compute N := ord(G ).

2. Fix a decomposition base / factor base F = {F1, . . . ,Fr}.
3. Compute r + 1 relations

αiA + βiB =
∑
j

ri ,jFj .

4. Compute γ ∈ Z/NZ with γR = 0.

=⇒ (
∑
i

γiαi )A + (
∑
i

γiβi )B = 0

5. Output e := −
∑

i γiβi∑
i γiαi

∈ Z/NZ.



Decomposition attacks

Task. Compute decompositions:

R = r1F1 + · · ·+ rrFr .

Or:

R = P1 + · · ·+ Pm

with
P1, . . . ,Pm ∈ F



Decomposition attacks

Task. Compute decompositions:

R

= r1F1 + · · ·+ rrFr .

Or:

R = P1 + · · ·+ Pm

with
P1, . . . ,Pm ∈ F



Decomposition attacks

Task. Compute decompositions:

R =

r1F1 + · · ·+ rrFr .

Or:

R = P1 + · · ·+ Pm

with
P1, . . . ,Pm ∈ F



Decomposition attacks

Task. Compute decompositions:

R = r1F1 + · · ·+ rrFr .

Or:

R = P1 + · · ·+ Pm

with
P1, . . . ,Pm ∈ F



Decomposition attacks

Task. Compute decompositions:

R = r1F1 + · · ·+ rrFr .

Or:

R

= P1 + · · ·+ Pm

with
P1, . . . ,Pm ∈ F



Decomposition attacks

Task. Compute decompositions:

R = r1F1 + · · ·+ rrFr .

Or:

R =

P1 + · · ·+ Pm

with
P1, . . . ,Pm ∈ F



Decomposition attacks

Task. Compute decompositions:

R = r1F1 + · · ·+ rrFr .

Or:

R = P1 + · · ·+ Pm

with
P1, . . . ,Pm ∈ F



In elliptic curves

Given: E/Fqn , n > 1 with points A,B.

Recall: x(P) determines ±P.



In elliptic curves

Given: E/Fqn , n > 1 with points A,B.

Recall: x(P) determines ±P.



In elliptic curves

Definition of F :

Fix U < Fqn . Let

F := {P ∈ E (Fqn) | x(P) ∈ U }.

Decomposition:
R = P1 + · · ·+ Pm

with x(Pi ) ∈ U, m · dim(U) ≈ n

via solving polynomial systems over Fq.



In elliptic curves

Definition of F :

Fix U < Fqn . Let

F := {P ∈ E (Fqn) | x(P) ∈ U }.

Decomposition:

R = P1 + · · ·+ Pm

with x(Pi ) ∈ U, m · dim(U) ≈ n

via solving polynomial systems over Fq.



In elliptic curves

Definition of F :

Fix U < Fqn . Let

F := {P ∈ E (Fqn) | x(P) ∈ U }.

Decomposition:
R

= P1 + · · ·+ Pm

with x(Pi ) ∈ U, m · dim(U) ≈ n

via solving polynomial systems over Fq.



In elliptic curves

Definition of F :

Fix U < Fqn . Let

F := {P ∈ E (Fqn) | x(P) ∈ U }.

Decomposition:
R = P1 + · · ·+ Pm

with x(Pi ) ∈ U, m · dim(U) ≈ n

via solving polynomial systems over Fq.



In elliptic curves

Definition of F :

Fix U < Fqn . Let

F := {P ∈ E (Fqn) | x(P) ∈ U }.

Decomposition:
R = P1 + · · ·+ Pm

with x(Pi ) ∈ U, m · dim(U) ≈ n

via solving polynomial systems over Fq.



A result

Theorem Let a, b > 0 be fixed. Then the DLP in elliptic curves
over Fqn can be solved in:

I For a · log(q)1/2 ≤ n ≤ b · log(q)1/2 : exp(O(log(qn)2/3)).

I For a · log(q)1/3 ≤ n ≤ b · log(q) : exp(O(log(qn)3/4)).



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

Let F1, . . . ,Fn ∈ k[X0, . . . ,Xn] be homogeneous polynomials.

Then “generically”, the system

F1 = · · · = Fn = 0

has exactly B := deg(F1) · · · deg(Fn) solutions over k .

For k = Fq one can find all these solutions in a time of
(B · log(q))O(1).

1. Linear algebra on a system X d
i · Fj (variable i , j).

2. Factorization of a single univariate polynomial.



Solving polynomial systems

What if I have more equations then unknowns?

The output is now very small.

The running time is usually smaller, but ...



Solving polynomial systems

What if I have more equations then unknowns?

The output is now very small.

The running time is usually smaller, but ...



Solving polynomial systems

What if I have more equations then unknowns?

The output is now very small.

The running time is usually smaller, but ...



Solving polynomial systems

What if I have a system of inhomogeneous polynomials
f1, . . . , fr ∈ Fq[x1, . . . , xn]?

“Most of the time” it is like considering the system of leading
terms.



Solving polynomial systems

What if I have a system of inhomogeneous polynomials
f1, . . . , fr ∈ Fq[x1, . . . , xn]?

“Most of the time” it is like considering the system of leading
terms.



Solving polynomial systems

What if I am just interested in solutions over Fq?

One can add the field equations

xqi − xi :

I irrelevant if degree q is not reached (“large characteristic”)

I particularly relevant for q = 2.



Solving polynomial systems

What if I am just interested in solutions over Fq?

One can add the field equations

xqi − xi

:

I irrelevant if degree q is not reached (“large characteristic”)

I particularly relevant for q = 2.



Solving polynomial systems

What if I am just interested in solutions over Fq?

One can add the field equations

xqi − xi :

I irrelevant if degree q is not reached (“large characteristic”)

I particularly relevant for q = 2.



Solving polynomial systems

What if I am just interested in solutions over Fq?

One can add the field equations

xqi − xi :

I irrelevant if degree q is not reached (“large characteristic”)

I particularly relevant for q = 2.



Solving polynomial systems

What if I just want to find a single solution over Fq?

Or whether there exists a solution over Fq?

This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.



Solving polynomial systems

What if I just want to find a single solution over Fq?

Or whether there exists a solution over Fq?

This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.



Solving polynomial systems

What if I just want to find a single solution over Fq?

Or whether there exists a solution over Fq?

This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.



Solving polynomial systems

What if I just want to find a single solution over Fq?

Or whether there exists a solution over Fq?

This (usually) cannot be done faster.

Compare: Over R one can efficiently approximate a single solution.



Large characteristic

Let E/Fqn be given.

Consider m = n, U = 〈v〉.

We search for decompositions

R = P1 + · · ·+ Pn , x(Pi ) ∈ U .

For example: Solve a system with n equations of degree 2n−1.

Heuristic: There are 2n(n−1) solutions over Fq.

Running time: 2Θ(n2) · logΘ(1)(q).

Faster?



Large characteristic

Let E/Fqn be given.

Consider m = n, U = 〈v〉.

We search for decompositions

R = P1 + · · ·+ Pn , x(Pi ) ∈ U .

For example: Solve a system with n equations of degree 2n−1.

Heuristic: There are 2n(n−1) solutions over Fq.

Running time: 2Θ(n2) · logΘ(1)(q).

Faster?



Large characteristic

Let E/Fqn be given.

Consider m = n, U = 〈v〉.

We search for decompositions

R = P1 + · · ·+ Pn , x(Pi ) ∈ U .

For example: Solve a system with n equations of degree 2n−1.

Heuristic: There are 2n(n−1) solutions over Fq.

Running time: 2Θ(n2) · logΘ(1)(q).

Faster?



Large characteristic

Let E/Fqn be given.

Consider m = n, U = 〈v〉.

We search for decompositions

R = P1 + · · ·+ Pn , x(Pi ) ∈ U .

For example: Solve a system with n equations of degree 2n−1.

Heuristic: There are 2n(n−1) solutions over Fq.

Running time: 2Θ(n2) · logΘ(1)(q).

Faster?



Large characteristic

Let E/Fqn be given.

Consider m = n, U = 〈v〉.

We search for decompositions

R = P1 + · · ·+ Pn , x(Pi ) ∈ U .

For example: Solve a system with n equations of degree 2n−1.

Heuristic: There are 2n(n−1) solutions over Fq.

Running time: 2Θ(n2) · logΘ(1)(q).

Faster?



Characteristic 2

Consider the DLP for E/F2n .

Igor Semeav: Decompositions can be computed in
polynomial time.

Then the running time crucially depends on the probability that an
R has a decomposition R = P1 + · · ·+ Pm ...

... which should be about 1
m! ...

... one obtains
eO(
√

n·log(n)) .

I am going to argue:

If this is correct, then there is a polynomial time algorithm.



Characteristic 2

Consider the DLP for E/F2n .

Igor Semeav: Decompositions can be computed in
polynomial time.

Then the running time crucially depends on the probability that an
R has a decomposition R = P1 + · · ·+ Pm

...

... which should be about 1
m! ...

... one obtains
eO(
√

n·log(n)) .

I am going to argue:

If this is correct, then there is a polynomial time algorithm.



Characteristic 2

Consider the DLP for E/F2n .

Igor Semeav: Decompositions can be computed in
polynomial time.

Then the running time crucially depends on the probability that an
R has a decomposition R = P1 + · · ·+ Pm ...

... which should be about 1
m!

...

... one obtains
eO(
√

n·log(n)) .

I am going to argue:

If this is correct, then there is a polynomial time algorithm.



Characteristic 2

Consider the DLP for E/F2n .

Igor Semeav: Decompositions can be computed in
polynomial time.

Then the running time crucially depends on the probability that an
R has a decomposition R = P1 + · · ·+ Pm ...

... which should be about 1
m! ...

... one obtains
eO(
√

n·log(n)) .

I am going to argue:

If this is correct, then there is a polynomial time algorithm.



Characteristic 2

Consider the DLP for E/F2n .

Igor Semeav: Decompositions can be computed in
polynomial time.

Then the running time crucially depends on the probability that an
R has a decomposition R = P1 + · · ·+ Pm ...

... which should be about 1
m! ...

... one obtains
eO(
√

n·log(n)) .

I am going to argue:

If this is correct, then there is a polynomial time algorithm.



Increased probability

Traditional:

Fix V < F2n .

Given R, compute R = P1 + · · ·+ Pm with x(Pi ) ∈ V .

Variant:

Fix F2n =
m⊕
i=1

Vi .

Given R, compute R = P1 + · · ·+ Pm with x(Pi ) ∈ Vi .

Now set m := n, Vi = 〈vi 〉.



Increased probability

Traditional:

Fix V < F2n .

Given R, compute R = P1 + · · ·+ Pm with x(Pi ) ∈ V .

Variant:

Fix F2n =
m⊕
i=1

Vi .

Given R, compute R = P1 + · · ·+ Pm with x(Pi ) ∈ Vi .

Now set m := n, Vi = 〈vi 〉.



Increased probability

Traditional:

Fix V < F2n .

Given R, compute R = P1 + · · ·+ Pm with x(Pi ) ∈ V .

Variant:

Fix F2n =
m⊕
i=1

Vi .

Given R, compute R = P1 + · · ·+ Pm with x(Pi ) ∈ Vi .

Now set m := n, Vi = 〈vi 〉.



New algorithm

For points A,B,
find one decomposition / representation of the form

B = ±A± 2A · · · ± 2n−3A .

If it exists, it is unique.

Equivalent:
B ± A± 2A± · · · ± 2n−3A = 0 .

S3(x(B), x(A), x1) = 0, S3(x1, x(2A), x2) = 0, . . . ,

S3(xn−4, x(2n−2A), x(2n−3A)) = 0



New algorithm

For points A,B,
find one decomposition / representation of the form

B = ±A± 2A · · · ± 2n−3A .

If it exists, it is unique.

Equivalent:
B ± A± 2A± · · · ± 2n−3A = 0 .

S3(x(B), x(A), x1) = 0, S3(x1, x(2A), x2) = 0, . . . ,

S3(xn−4, x(2n−2A), x(2n−3A)) = 0



New algorithm

For points A,B,
find one decomposition / representation of the form

B = ±A± 2A · · · ± 2n−3A .

If it exists, it is unique.

Equivalent:
B ± A± 2A± · · · ± 2n−3A = 0 .

S3(x(B), x(A), x1) = 0, S3(x1, x(2A), x2) = 0, . . . ,

S3(xn−4, x(2n−2A), x(2n−3A)) = 0



New algorithm

For points A,B,
find one decomposition / representation of the form

B = ±A± 2A · · · ± 2n−3A .

If it exists, it is unique.

Equivalent:
B ± A± 2A± · · · ± 2n−3A = 0 .

S3(x(B), x(A), x1) = 0, S3(x1, x(2A), x2) = 0, . . . ,

S3(xn−4, x(2n−2A), x(2n−3A)) = 0



Experimental results

Largest experiment for n = 11.

55 variables, 66 quadratic equations

Largest degree reached in Gröbner base computation: 3

... with 30 GB.

A heuristic says: For random systems usually: 8



Experimental results

Largest experiment for n = 11.

55 variables, 66 quadratic equations

Largest degree reached in Gröbner base computation:

3

... with 30 GB.

A heuristic says: For random systems usually: 8



Experimental results

Largest experiment for n = 11.

55 variables, 66 quadratic equations

Largest degree reached in Gröbner base computation: 3

... with 30 GB.

A heuristic says: For random systems usually: 8



Experimental results

Largest experiment for n = 11.

55 variables, 66 quadratic equations

Largest degree reached in Gröbner base computation: 3

... with 30 GB.

A heuristic says: For random systems usually: 8



Experimental results

Largest experiment for n = 11.

55 variables, 66 quadratic equations

Largest degree reached in Gröbner base computation: 3

... with 30 GB.

A heuristic says: For random systems usually:

8



Experimental results

Largest experiment for n = 11.

55 variables, 66 quadratic equations

Largest degree reached in Gröbner base computation: 3

... with 30 GB.

A heuristic says: For random systems usually: 8



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity

more than:

((

n2

)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity

more than:

((

n2

)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity

more than:

((

n2

)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity

more than:

(

(n2)3

)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5

= n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage:

((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits

= n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100:

10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits

= 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits

> 1021 bytes = 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes

= 10007 bytes =
1 Zettabyte !



What does this mean in practice?

Assume the best: Linear algebra on degree 3 suffices.

Practical time complexity more than:

((n2)3)2.5 = n15 .

n n15 2n/2 · n2

10 250 212

100 299 264

200 2114 2116

Storage: ((n2)3)2 bits = n12 bits.

For n = 100: 10012 bits = 1024 bits > 1021 bytes = 10007 bytes =
1 Zettabyte !


